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Physical Image of the Mixture
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1
METHOD FOR IDENTIFYING
COMPONENTS OF A MIXTURE VIA
SPECTRAL ANALYSIS

FIELD OF THE INVENTION

The present invention is directed generally toward the
field of spectral analysis and, more particularly, toward an
improved method of identifying unknown components of a
mixture from a set of spectra collected from the mixture
using a spectral library including potential candidates.

BACKGROUND OF THE INVENTION

It is becoming increasingly important and urgent to rap-
idly and accurately identify toxic materials or pathogens
with a high degree of reliability, particularly when the
toxins/pathogens may be purposefully or inadvertently
mixed with other materials. In uncontrolled environments,
such as the atmosphere, a wide variety of airborne organic
particles from humans, plants and animals occur naturally.
Many of these naturally occurring organic particles appear
similar to some toxins and pathogens, even at a genetic level.
It is important to be able to distinguish between these
organic particles and the toxins/pathogens.

In cases where toxins and/or pathogens are purposely
used to inflict harm or damage, they are typically mixed with
so called “masking agents” to conceal their identity. These
masking agents are used to trick various detection methods
and apparatus to overlook or be unable to distinguish the
toxins/pathogens mixed therewith. This is a recurring con-
cern for homeland security where the malicious use of toxins
and/or infectious pathogens may disrupt the nation’s air,
water and/or food supplies. Additionally, certain businesses
and industries could also benefit from the rapid and accurate
identification of the components of mixtures and materials.
One such industry that comes to mind is the drug manufac-
turing industry, where the identification of mixture compo-
sition could aid in preventing the alteration of prescription
and non-prescription drugs.

One known method for identifying materials and organic
substances contained within a mixture is to measure the
absorbance, transmission, reflectance or emission of each
component of the given mixture as a function of the wave-
length or frequency of the illuminating or scattered light
transmitted through the mixture. This, of course, requires
that the mixture be separable into its component parts. Such
measurements as a function of wavelength or frequency
produce a plot that is generally referred to as a spectrum. The
spectra of the components of a given mixture, material or
object, i.e., a sample spectra, can be identified by comparing
the sample spectra to a set of reference spectra that have
been individually collected for a set of known elements or
materials. The set of reference spectra are typically referred
to as a spectral library, and the process of comparing the
sample spectra to the spectral library is generally termed a
spectral library search. Spectral library searches have been
described in the literature for many years, and are widely
used today. Spectral library searches using infrared (ap-
proximately 750 nm to 1000 pm wavelength), Raman,
fluorescence or near infrared (approximately 750 nm to 2500
nm wavelength) transmissions are well suited to identify
many materials due to the rich set of detailed features these
spectroscopy techniques generally produce. The above-iden-
tified spectroscopy techniques provide a rich fingerprint of
the various pure entities that are currently used to identify
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them in mixtures which are separable into its component
parts via spectral library searching.

While spectral library searching is a widely used method
of determining the composition of mixtures, there are a
number of factors that can complicate the process of spectral
library searching. In an ideal world, the spectrum of a
mixture, material, or component part thereof would only
contain information that corresponds to the chemical con-
stituency of that mixture, material, or component part.
However, in actuality, most spectra also contain information
that is related to the instrument response function of the
instrument used to collect the spectra. Various known cor-
rectional algorithms are typically applied to the raw spectral
data in an attempt to minimize the amount of instrumental
information contained in both the reference and sample
spectra.

Another problem with spectral library searching is that
many samples of interest submitted for identification are
mixtures rather than pure components. Spectral library
searching can only be used to identify pure components. The
number of possible mixtures of even a limited multi-com-
ponent system is very large. The spectrum of a mixture
typically differs significantly from the spectra of the pure
components that comprise the mixture. Since a typical
spectral library stores only spectra of pure components, the
current, commercially available spectral library packages
are generally unable to identify the components of any given
mixture that a user might analyze. Therefore, a method to
clearly delineate and identify various materials and, more
specifically, toxins and pathogens, when they occur in
mixtures is both a timely and important problem that is
addressed by the present invention.

Several multivariate statistical techniques are currently
available that allow a data analyst to identify components of
a particular mixture from their spectra. One such technique
is the “target factor testing” approach that has been devel-
oped by Malinowski (see E. R. Malinowski, Factor Aralysis
in Chemistry, Wiley-Interscience, New York, 1991), the
disclosure of which is incorporated by reference herein.
Target factor testing results in a ranking of the target spectra,
i.e., those spectra that are considered as potential candidates
of the mixture, and reports the top x targets as the pure
components of the mixture. It has been found, however, that
there are many cases where the actual components of the
mixture are ranked high in the candidate list, but are not
ranked within the top x matches (where x is the number of
pure components in the mixture). Thus, target factor testing
has certain disadvantages when used to identify toxins and
biological pathogens in mixtures, since a high degree of
reliability and accuracy is generally desired.

The present invention is directed toward overcoming one
or more of the above-mentioned problems.

SUMMARY OF THE INVENTION

The present invention combines the generality of typical
spectral library searching with the ability of target factor
testing to identify the components contained within a mix-
ture. Current evaluations of the inventive approach as
applied to toxin and pathogen detection have proven to
provide superior detection, identification, reproducibility
and reliability than has been possible with other known
alternative spectral unmixing analysis methods.

The method of the present invention allows the compo-
nents of a mixture to be identified from a set of spectra
collected from the mixture sample. The present invention
can be applied to the spectra derived from several arbitrary
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points of the sample, as obtained with a point focus spec-
trometer, or from various regions in a field of view, as
obtained with a full field of view imaging spectrometer. It
can also be successfully applied in dynamic situations where
it is desired to analyze trends in the composition of a mixture
over a period of time. The present invention has been
successfully tested via the identification of components of
mixtures of common household materials, laboratory chemi-
cals, and a variety of biological species (primarily Bacillus)
from their Raman spectra.

According to the spectral unmixing method of the present
invention, a set of spectral data is collected from a mixture
(i.e., mixture spectra). The mixture can be a gas, liquid,
solid, powder, etc. The mixture spectra are corrected to
remove instrumental artifacts, including fluorescence and
baseline effects. The collected mixture spectra define an
n-dimensional data space, where n is the number of spectral
points in the spectra. Principal component analysis (PCA)
techniques are applied to the n-dimensional data space to
reduce the dimensionality of the data space. The dimension-
ality reduction step results in the selection of m eigenvectors
as coordinate axes in the new data space. The members of a
spectral library of known, pure components are compared to
the reduced dimensionality data space generated from the
mixture spectra using target factor testing techniques. Each
library spectrum is projected as a vector in the reduced
m-dimensional data space, and target factor testing results in
an angle between the library vector and the data space for
each spectral library member by calculating the angle
between the library member and the projected library spec-
trum. Those spectral library members that have the smallest
angles with the data space are considered to be potential
members, or candidates, of the mixture and are submitted for
further testing in accordance with the inventive method. The
spectral library members are ranked and every combination
of the top y members is considered as a potential solution to
the composition of the mixture. As will be discussed later, in
a preferred embodiment, y has a value of 10 in these
applications. However, this can be generalized to as many
components as can be handled by the computing capabilities
employed for this analysis. A multivariate least-squares
solution is then calculated using the mixture spectra for each
of the candidate combinations. Finally, a ranking algorithm
is applied to each combination and is used to select the
combination that is most likely the set of pure components
in the mixture, and thus identify the components of the
mixture.

The identification of the components of the mixture is
typically performed on a surface upon which the mixture is
located. This results in the mixture being spread out or
located over some spatial area which is then probed by the
spectroscopic method. The spectral data can thereby consist
of sets of spectral data at different spatial positions which
will define the n-dimensional data space. The small, often
subtle, spatial variations in this n-dimensional data space
allow greater sensitivity to deconvolve or unmix the com-
ponents of the mixture.

In one form, another set of spectral data are obtained from
the mixture at a later point in time, such that the another set
of spectral data is separated from the set of spectral data by
a time interval. The collected another spectral data set
defines an n-dimensional data space, and the inventive
spectral unmixing method described herein is applied to the
another spectral data set to determine the set of components
in the mixture at the later point in time. The identified
components of the mixture from both the set of spectral data
and the another set of spectral data can be utilized to analyze
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trends in the composition of the mixture over the time
interval. The speed at which the inventive method identifies
the components of the mixture allows the inventive method
to be used in such dynamic spectral unmixing applications
where the sampling of a mixture occurs in defined or random
intervals.

In another form, different sets of spectral data are obtained
from the mixture at different points in time. The different
sets of spectral data (e.g., two or more) are combined into a
combined spectral data set, and the inventive spectral
unmixing method described herein applied to the combined
spectral data set to determine the composition of the mix-
ture. By combining the spectral data sets, it is possible to
obtain better results than if each spectral data set were
analyzed individually.

It is an object of the present invention to accurately and
rapidly identify the various components contained in a
mixture.

It is an additional object of the present invention to
accurately and rapidly identify the various components in a
mixture at different spatial locations.

It is a further object of the present invention to analyze
trends in the composition of a mixture over a period of time.

Other objects, aspects and advantages of the present
invention can be obtained from a study of the specification,
the drawings, and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a general flow chart of the spectral unmixing
method in accordance with the present invention;

FIG. 2a is a spectral plot of a first mixture spectrum in a
set of mathematically generated mixture spectra containing
Bacillus Pumilis, Bacillus Subtilis and Baking Soda, with
random wavelength and intensity independent noise added
at a level of 1%;

FIG. 25 is a spectral plot of all mixture spectra in a set of
mathematically generated mixture spectra containing Bacil-
lus Pumilis, Bacillus Subtilis and Baking Soda;

FIG. 2¢ is a spectral plot of Bacillus Pumilis;

FIG. 2d is a spectral plot of Bacillus Subtilis;

FIG. 2e is a spectral plot of Baking Soda;

FIG. 3 is a physical image of the mixture of Microcrys-
talline Cellulose, Corn Starch, and Cane Sugar that is used
for Example 2;

FIG. 4a is a spectral plot of a first mixture spectrum in a
set of experimentally collected mixture spectra containing
Microcrystalline Cellulose, Corn Starch, and Cane Sugar;

FIG. 45 is a spectral plot of all mixture spectra in a set of
experimentally collected mixture spectra containing Micro-
crystalline Cellulose, Corn Starch, and Cane Sugar;

FIG. 4c is a spectral plot of Cane Sugar;

FIG. 4d is a spectral plot of Microcrystalline Cellulose;
and

FIG. 4e is a spectral plot of Corn Starch.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention requires the existence of a spectral
library of reference materials. The spectral library includes
a set of reference spectra that have been individually col-
lected for a set of known elements. As used herein, the term
element refers to atomic elements, materials, mixtures, com-
positions, chemical species, etc. The spectral library will be
used in accordance with the method of the present invention
as described herein to identify the components in a mixture.
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As shown in the flow chart of FIG. 1, the first step of the
inventive method includes the collection of a set of spectra
taken at various points or at particular times from a mixture
sample (mixture spectra), as shown at block 100. The
mixture spectra can be collected using various spectroscopi-
cal techniques, such as, but not limited to, infrared, Raman,
florescence and near infrared spectroscopy techniques. The
mixture spectra, as well as the library spectra, should be
corrected to remove all signals and information that are not
due to the chemical compositions of the mixture sample and
known elements/materials. These include various instru-
mental effects, such as the transmission of optical elements,
the responsivity of the detector, and any other non-desired
sample effects due to the instrument utilized to collect the
spectra, for example, fluorescence in the case of Raman
spectra. The mixture spectra, as well as the library spectra,
may be corrected to remove instrumental artifacts using any
of a variety of known correction methods. However, one
skilled in the art will appreciate that uncorrected spectra may
also be utilized to practice the inventive method such as, for
example, when second derivative spectra are used, without
departing from the spirit and scope of the present invention.

The key to the inventive spectral unmixing approach is
that the mixture be composed of non-uniformly admixed
substances. This arises from random and/or statistical fluc-
tuations in the mixture of even admixed substances that will
appear at various degrees of magnification. For example,
granular mixtures will exhibit variations on the scale of the
grain size as one moves from one grain to another grain.
However, sufficiently far away when the individual grains
cannot be distinguished, a uniform mixture may appear. The
degree to which the different grains are uniformly blended
throughout the mixture, however, will determine whether
this admixture appears to be uniform.

In most practical cases, such non-uniformities are com-
mon and thereby will yield to the inventive method, pro-
viding that the magnification used to examine the mixture is
sufficient to resolve these non-uniformities. Choosing the
sampling regions to obtain the mixture spectra is thereby
important, and the image of the sample can be used to target
specific areas to identify regions of spectra. Obtaining
spectral data from an entire field of view with an imaging
spectrometer, i.e., one that acquires spectra over an entire
field of view, is preferred since spectra from all regions of
the sample under observation are acquired simultaneously
and become part of the mixture spectra, or data set, to be
analyzed. In this latter approach to collecting spectral data
over an entire field of view, one does not have to second-
guess which regions may be important. The spectral varia-
tions found in every pixel of the image will be available and
accessible for analysis.

The magnification with which the spectra are collected,
i.e., the spatial resolution, must be such that each mixture
spectrum collected has varying percentages of the pure
components represented in each spectrum (see J. Guilment,
S. Markel and W. Windig, Infrared Chemical Micro-Imag-
ing Assisted by Interactive Self-Modeling Multivariate
Analysis, Applied Spectroscopy, vol. 48, no. 3, pp 320-326,
1994), the disclosure of which is incorporated by reference
herein. If the spatial resolution is high enough, one could get
pure component spectra. However, that is generally not
practical or even possible. The inventive method will work
even though the spectra collected do not represent the pure
components in the mixture. The only stipulation is that the
spatial resolution must not be so low that the spectra are
identical and represent totally homogenous mixtures at
every data point. In other words, the concentrations of the
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components within the mixtures must (and usually do) vary
slightly over the regions sampled. Collection or deposition
methods that bring out or emphasize such inhomogeneities
in a mixture on the relevant scale for inspection and spectral
sampling will further improve the sensitivity, speed and/or
accuracy of the inventive method.

The collected set of mixture spectra generally define an
n-dimensional data space, where n is the number of spectral
points in the mixture spectra. After the mixture spectra have
been corrected to remove instrumental artifacts, the next step
of the inventive method is to apply conventional principal
component analysis (PCA) techniques to the set of mixture
spectra to generate m eigenvectors, as shown at block 200.
PCA techniques are well known in the relevant art and,
accordingly, a detailed description of such techniques is not
necessary. This step allows a reduction in the dimensionality
of'the data space and allows the representation of each of the
mixture spectra as a vector in the m-dimensional space,
where m is selected as the number of eigenvectors needed to
explain 99% of the variance of the data. The key equation
utilized in applying principal component analysis (PCA)
techniques is:

Dty = Uy W V., (Eq. 1)

where Data is the input data matrix with p rows and n
columns, W is a diagonal matrix with positive or zero valued
elements that correspond to the n eigenvalues of the input
data matrix, V7, the so-called loadings, is a transpose matrix
related to the diagonal matrix W, and U, the so-called scores,
is a matrix that corresponds to the set of n eigenvectors for
the input data matrix. Note, that as already mentioned, only
m of the n eigenvectors are used. While PCA techniques are
utilized herein to scale the set of mixture spectra, it should
be understood that singular value decomposition (SVD)
techniques, as well as other scaling techniques, can be
utilized without departing from the spirit and scope of the
present invention. More details on the SVD algorithm,
which is the core of PCA, can be obtained by consulting a
mathematical text such as Numerical Recipes (see Numeri-
cal Recipes in C, Cambridge University Press, Cambridge,
1999), the disclosure of which is incorporated by reference
herein.

Conventional target factor testing techniques can be
applied to the set of m eigenvectors to determine the top y
candidates of the mixture, as shown at block 300. Target
factor testing techniques are well known in the relevant art
and, accordingly, a detailed description of such techniques is
not necessary. In applying target factor testing, each library
spectrum is represented as a vector in the n-dimensional data
space, and the angle of projection of each library spectrum
with mixture data space is calculated. This calculation
involves taking the dot product of the library vector with the
n-dimensional data space. More specifically, this calculation
is performed by taking the dot product of the library spec-
trum libj with each eigenvector V,, (also termed the loading
vector or principal component), in accordance with the
following equation:

L (Eq. 2)
S = Z; lib; V;,
<
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where j ranges over the number of spectral points in each
library spectrum (equivalent to the number of points in each
eigenvector V, ;) and i is the number of eigenvectors used to
represent the mixture data space. Eq. 2 assumes that the sum
of squares of the matrix V is equal to 1, and the sum of
squares of lib, is also equal to 1. The resultant of each dot
product is a scalar s,. The resulting scalars for a given library
spectrum are combined by taking the square root of the sum
of the squares of the scalars, in accordance with the follow-
ing equation:

m
Savg = [ X Si#Si,
i=1

where 1 ranges over the number of eigenvectors used to
represent the mixture data space.

The resulting scalar s, . represents the cosine of the angle
of the library spectrum with the mixture data space. If the
value of the resulting scalar is 1.0, the library spectrum maps
perfectly into the mixture data space. As the resulting scalar
Savgs 1-€., the cosine of the angle, becomes closer to zero, the
fit of the library spectrum into the mixture data space
becomes increasingly worse. Accordingly, an angle of 0-de-
grees represents a perfect fit of the library spectrum into the
mixture data space, and indicates an element that is a likely
component of the mixture. The library spectra are then
ranked by their angle of projection into the mixture data
space, i.e., the closer the resulting scalar s,,,, is to 1.0, the
higher the library spectrum is ranked. However, it has been
found that this ranking of the library spectra via target factor
testing techniques is not sufficient to generally yield correct
identification of the components of a mixture. Thus, the
present invention requires a further series of operations in
order to accurately identify the components of the mixture.

In the next step of the inventive method, the top y library
spectra are selected as potential components or candidates of
the mixture and are submitted for further testing, as shown
at block 400. If the library spectrum is not within the top y
matches, it is discarded at block 500. All possible subsets, or
combinations, of the top y matches are generated, as shown
at block 600, and a series of operations are then applied to
every possible combination of these top y matches to
develop a ranking criterion for each combination. The
number of possible combinations for the top y matches is
equal to the formula 27-1.

In a preferred embodiment of the present invention, y is
set equal to 10, such that the inventive method performs the
series of operations on every possible combination of the top
10 matches, as shown at block 700. It has been found herein
that the actual components of a mixture will typically be
included in the top 10 matches developed by conventional
target factor testing. Thus, in the preferred embodiment y is
set equal to 10. For cases where matches are not found in the
top 10, y can be increased to be greater than 10.

In the particular case with y set to equal to 10, there will
be, 10, 45, 120, 210, 252, 210, 120, 45, 10 and 1 (=1023)
combinations, or candidate solutions, generated for the 1-,
2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, and 10-component solutions,
respectively. For each combination, a series of operations is
performed that generates the ranking, or scalar, criterion,
i.e., corrected correlation coeflicient CorrectCorrCoef, that
is used to select the most likely combination, i.e., compo-
nents of the mixture, as shown at block 700. The series of
operations performed at block 700 is as follows.

(Eq. 3)
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The first step in generating the ranking, or scalar, criterion
is to calculate a projected library spectrum for each pure
component library spectrum in a given candidate solution.
The projected library spectrum is calculated in two steps.
The first step uses the known mixture spectra and the known
pure component library spectra in the set of candidate
spectra to calculate the relative concentrations or contribu-
tions of each of the component library spectra. In equation
form, the mixture spectra can be represented as follows:

Moy =Cona™Laes o, (Eq. 4),
where M is the mixture data set with a rows of mixture
spectra and b columns of variables, C is the unknown
contributions or concentrations, L is a matrix with d rows of
candidate library spectra and b columns of variables, and E
represents an error matrix with a rows and b columns. The
estimate of the concentrations C is calculated using a
classical least-squares analysis. The least-squares procedure
calculates a solution for Eq. 4 in which the error matrix E is
minimized. The equation for calculating C is as follows:

C=MLTLLH™! (Eq. 5).

The second step uses the calculated concentrations C and
the known mixture spectra M to calculate the projected
library spectra L, in accordance with the following equation:

=7 ¢ (Eq. 6).

If the projected (calculated) library spectra [, are very
similar to the actual library spectra L, the candidate solution
(set of suggested library spectra) is most likely correct.
Similarly, if the projected (calculated) library spectra [, are
dissimilar to the actual library spectra L, the candidate
solution (set of suggested library spectra) is most likely not
correct. To measure the similarity of the actual library
spectra L to the projected (calculated) library spectra [, the
correlation coefficient CorrCoef of each projected (calcu-
lated) library spectrum I, with its actual library spectrum L
is calculated. The correlation coefficient CorrCoef is the dot
product of the projected library spectrum I, with the actual
library spectrum L., divided by the multiplication of the dot
product of the projected library spectrum [, with itself and
the dot product of the actual library spectrum L with itself,
in accordance with the following equation.

L (Eq. 7)

where i ranges over the number of spectral points, [, is the
projected library spectrum, and L is the actual library
spectrum. From the resulting correlation coefficient Cor-
rCoef for each library spectrum within a candidate solution,
the square root of the sum of the squares of the correlation
coeflicients for a potential candidate solution divided by the
number of members in the candidate solution is calculated to
develop a cumulative correlation coefficient value CumCor-
rCoef as follows.
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x (Eq. 8)
> CorrCoef; = CorrCoef;
i=1

CumCorrCoef = \/ -,
X

where 1 ranges over the number of components x in the
candidate solution. This cumulative correlation coefficient
value CumCorrCoef is the basic criterion used to judge
among multiple candidate solutions in order to determine the
top candidate solution, which represents the most likely
components of the mixture.

To prune out unreasonable solutions, any candidate solu-
tion in which one of the components is calculated to have
negative concentrations in the mixture spectra is eliminated.
This step is further refined by calculating the ratio of the
maximum positive concentration to the average of the sum
of the absolute values of the negative concentrations, and
eliminating that candidate solution if this ratio is less than
4.0. This refinement allows the case to be captured in which
only one or a small number of mixture spectra have signifi-
cant concentrations of a given component. The Ratio is
calculated according to the following equation.

MaxPos

Eq. 9
Ratio s —8—, (Eg- 9)

M~

|Concil /2
i=1

i

where 7z is the number of concentrations that are negative,
MaxPos is the value of the concentration value with the
highest positive concentration, and Conc, are the set of
concentration values that are negative. The inventive
method is further enhanced by squaring the cumulative
correlation coefficient value CumCorrCoef (to convert it to
variance) and multiplying it by the cumulative eigenvalues
for each candidate solution, as follows.

CorrectCorrCoef=CumCorrCoef*CumCorrCoef*CumEigen (Eq. 10),

where 1 is the number of components in the candidate
solution (and the number of eigenvalues to use for the sum
of the cumulative eigenvalues). Note that the cumulative
eigenvalues CumFigen, are reported and used as a decimal
percentage based on the number of calculated eigenvectors
needed to explain 99.9% of the variance.

The cumulative eigenvalues, or cumulative variance, are
calculated as follows. First, the eigenvalues of the mean
centered data set are obtained. It should be noted that the
mixture spectra cannot be normalized for this procedure,
since normalization of the mixture spectra will result in a
rank of the data set of one less than the number of compo-
nents in the mixture. The eigenvalues are then normalized so
that the sum of all eigenvalues is equal to 1, as follows:

X (Eq. 11)

5

Aiscated) =

A

™Mz

1

.
I

where A4 15 the eigenvalue scaled by the sum of the
eigenvalues, and A is the eigenvalue of the centered data.
The cumulative eigenvalues CumFEigen are then calculated
as follows:
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i (Eq. 12)
CumkEigen; = Aicumuative) = Z Ajiscated)s
=

where the values for i range from 1 to m.

The additional term of the variance was added since,
without it, in some cases a candidate solution with not
enough components may have been chosen. As mentioned
above, the cumulative eigenvalues, or cumulative variance,
are scaled to have a maximum of 1. For example, for a three
component mixture the diagnostic value (without the cumu-
lative variance) may incorrectly show a maximum for a
solution with two components. However, the cumulative
variance (cumulative eigenvalues) will be significant lower
for this two component solution than for the correct three
component solution. By combining the cumulative eigen-
values (cumulative variance) with the diagnostic value as
shown in Eq. 10, the three component solution will produce
a higher corrected correlation coefficient CorrectCorrCoef
and minimize the problem of underestimating the number of
components.

The resulting ranking criterion, i.e., the corrected corre-
lation coeflicient CorrectCorrCoef, is used to select the most
likely candidate solution. The correct candidate solution is
the one with highest corrected correlation coefficient Cor-
rectCorrCoef, as shown at block 800. The inventive method
has been tested on a number of experimental and simulated
data sets with excellent results, as shown below.

There can be cases where larger numbers of actual com-
ponents in the mixture arise. In such cases, it is likely that
some logical neighborhood in the sample will exhibit a
smaller number of components. For this case, a data set can
be calculated over each neighborhood, and these algorithms
applied independently to each. The final set of compounds
present in the mixture is the collective set of these local
regions.

EXAMPLE 1

One such simulated data set is a set of 22 mixture spectra
(with 1269 spectral points from 1020.75 to 3229.20 cm™)
that was generated by mathematically combining various
multiples of three experimental spectra of Bacillus Pumilis,
Bacillus Subtilis and Baking Soda, with the contributions of
each ranging from 30.0 to 38.333%, and with random
wavelength and intensity independent noise being added at
a level of 1%. The spectra library for these examples
consisted of 18-150 spectra of known pure components.
Since the experimental mixture spectra were generated
mathematically, the steps of collecting the mixture spectra
and removing instrumental artifacts can be omitted. The next
step of the inventive method uses conventional target factor
testing to return the top 10 matches (y=10), where an angle
of 0-degrees represents a perfect match.

TABLE 1
Spectral Library Entry Angle
Bacillus Pumilis 18.60
Bacillus Subtilis 21.67
Bacillus Cereus 25.24
Bacillus Anthracis 25.81
Clostridium Sporogenes 25.86
Baking Soda 25.95
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TABLE 1-continued TABLE 3-continued
Spectral Library Entry Angle Match Score Substance
Carboxymethyl Cellulose 26.40 5 6 69.28 Bacillus Cereus
Bisquick 27.36 7 68.44 Flour
Flour 28.46 8 67.97 Bisquick
Bacillus Thuriengis 29.88 9 67.37 Bacillus Subtilis
10 66.74 Cormn Starch
11 66.37 Cane Sugar
As can be seen from Table 1, Baking Soda is not among 10 12 65.92 Microrystalline Cellulose
the top three matches. Thus, traditional target factor testing }i gg'zg ]%Vevzfrzg:“ow
would result in an incorrect identification of the components 15 55.74 Tale
of'the mixture. Applying the remaining steps of the inventive 16 55.01 Bacillus
method yield corrected correlation coefficient values Cor- Stearothermophilus
rectCorrCoef of 0.1978, 0.3134, 0.3570, 0.3250, and 0.2985 15 g i‘;; gﬁig ls)gjvae .
as the top solutions for mixtures with one through five i &
components, respectively (where a value of 1.0 represents a
perfect match). The top five candidate solutions calculated in Thus, for Example 1, neither target factor testing nor a
accordance with the inventive method are shown in Table 2 standard spectral library search gives the correct result.
below. 20 However, as shown above, the inventive method described
herein correctly identified the components of the mixture.
TABLE 2 .
Example 1 Calculations
cce
Components Value s This section provides a set of calculations to illustrate the
Bacillus Pumilis, Bacillus Subtilis, Baking Soda 0.3570 inventive method as applied to the mixture of Example 1.
Bacillus Pumilis, Bacillus Subtilis, Bacillus Cereus, Baking Soda 0.3250 While this section will only describe the calculations for the
g‘a’fﬂ”sp Z””'Z"S’ Bacillus Subtilis, Clostridium Spotogenes, 0.3223 identified best match of Bacillus Pumilis, Bacillus Subtilis,
ing Soda . .
Bacillus Pumilis, Bacillus Subtilis, Baking Soda, Carboxymethyl 0.3184 and Bal.(lng S.Oda’ it should be understood t.hat the Se.lme
Cellulose 30 calculations will be performed for every possible combina-
Bacillus Subtilis, Bacillus Cereus, Baking Soda 0.3160 tion of the top 10 matches (y=10) identified in Table 1.
Target factor testing yields the ranked matches provided
As can be seen from Table 2. the best match occurs for a in Table 1. One of the 1023 potential candidate solutions
mixture with three ¢ omponent,s and the three-component (subsets resulting from all possible combinations of the top
system with the best match is ’Bacillus Pumilis. Bacillus 3> 10 matches) is Bacillus Pumilis, Bacillus Subtilis, and
Subtilis, and Baking Soda. The corrected correla’tion coef- Bakigg Soda. The projected library spectra are calculateq as
ficient values CorrectCorrCoef calculated are low because dcescrclbe? e}boxﬁ: usm% E?S' 37? The chorrelatlon coeﬂime}rllt
the mixture spectra are very noisy (a perfect match would orrCoel 15 then calculated for each component 1 the
have a value of 1.0). In spite of this, the inventive method candlda.te solution using the pro;ecte(.i library spectra and .the
is able to return the correct result for this example. 40 actual library spectra, as described in Eq. 7. The resulting
FIGS. 2a—e illustrate the mixture spectra of Example 1 values galculated using Eq..7 are 0'86.9.9’ 0.8523, apd 0.8845
(FIGS .2a and 2b), and the pure component spectra for for Bacillus Pumilis, Bacillus Subtilis, and Baking Soda,
Bacillus Pumilis (FIG. 2¢), Bacillus Subtilis (FIG. 2d), and ~ "cspectively. Using Eq. 8, the square root of the sum of the
Baking Soda (FIG .2e) ,One can see that thé mi;(mre squares of these numbers, divided by 3.0, equals 0.8691. The
& . ’ . .. 45 test for negative concentrations is false (Eq. 9), so the
spectrum shown in FIG. 2a (the first mixture spectrum) is . . . s -
significantly different from each of the individual pure Baqllus Pumilis, Bacillus Subtilis, aI.ld Baklng Soda solu-
. . tion is not deleted. The last step of the inventive method (Eq.
component library spectrum as shown in FIGS. 2¢—. Com- . . .

. 4 . . 10) is to square the cumulative correlation value (0.8691)
paring the collection of mixture spectra in FIGS. 2a and 26 and multiply it by the cumulative cigenvalues (0.4727 for
illustrates that there is a variation in the peak intensities of Py 1t by the g S .
the mixture spectra. The inventive method will work even 50 three factors)—obtaining a corrected correlation coefficient
with only a small amount of variation. Such variations can value CorrectCorrCoef result of 0.3570.
typically be achieved in real situations using data collection EXAMPLE 2
strategies that exploit, for example, sampling strategies or
chegﬂlges 1(111 magn}ﬁcaltloél ’ lidean Di lib b 55 Another sample data set that has been tested contains a

" one oelsl ahmmp © bucl fela(r)lo 1fstanlcle ]13 rary iea{c 6 (a mixture of Cane Sugar, Microcystalline Cellulose, and Corn
perfect match has ahscFrﬁ o ) Olilt e xa{)np.e J st Starch, with equal amounts of Microcrystalline Cellulose
mixture spectrum, the following matches are obtained. and Corn Starch and three times that amount by weight of

Cane Sugar. An image of this mixture is shown in FIG. 3,

TABLE 3 60 which is composed of 100 smaller images. Spectra from

Match Score Substance each of the 100 sample positions were collected (with 832
spectral points from 513.0 to 3450.0 cm™) and the inventive

1 71.05 Bacillus Pumilis method applied to these spectra after applying a conven-

; Zg'gg ggéﬁi;iﬁ;ﬁ;fcéillulose tional instrumental response correction function to each

4 69.08 Clostridium Sporogenes 65 spectrum. Target factor testing returned the top 10 matches

5 69.67 Bacillus Thuriengis (y=10), where an angle of 0-degrees represents a perfect

match.
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TABLE 4 TABLE 6-continued
Spectral Library Entry Angle Match Score Substance
Microcrystalline Cellulose 11.06 5 3 81.09 Carboxymethyl Cellulose
Corn Starch 13.17 4 80.86 All Purpose Flour
Flour 13.65 5 79.99 Low Fat Bisquick
Carboxymethyl Cellulose 14.88 6 76.94 Cane Sugar
Bisquick 15.41 7 73.97 Sweet-n-Low
Bacillus Anthracis in AK2 Media 17.35 8 72.96 Bacillus Anthracis in Ak2
Cane Sugar 21.42 10 media
Bacillus Anthracis in Sporulation Broth 21.83 9 72.13 Dextrose
Bacillus Subtilis 26.63 10 70.15 BG Edgewood LD130_8
Acetaminophen 26.91 11 68.27 Bacillus Anthracis in
Sporulation Broth
12 61.89 Bacillus Anthracis in G
As can be seen from Table 4, Cane Sugar is not among the 15 media
top three matches. Thus, traditional target factor testing 13 43.38 Baking Powder
. . . . . 14 41.69 Acetaminophen
would result in an incorrect identification of the components 15 3063 Baking Soda
of the mixture. Applying the remaining steps of the inventive 16 33.01 Tale
method yield corrected correlation coefficient values Cor-
rectCorrCoef 0of 0.5707, 0.7944, 0.8240, 0.8202, 0.7787, and 20 Thus. for F le 2. neither tareet factor festi
0.5867 as the top solutions for mixtures with one through six us, ot bxampre £, either target lactor testng nor a
- standard spectral library search gives the correct result.
components, respectively (where a value of 1.0 represents a . . .
. . . However, as shown above, the inventive method described
perfect match). The top five candidate solutions calculated in . . . .
. - . - herein correctly identified the components of the mixture,
accordance with the inventive method are shown in Table 5 . . .
below. ,5 given that Corn Starch, Flour, and Bisquick are considered
’ in the library to be equivalent components.
TABLE 5
Components CCC Value Example 2 Calculations
ﬁiggggiiﬁii g:ﬁﬁ}gzz f:l(;):;s?;rlli Sgii Sugar g:gigg 39 This section provides a set of calculations to illustrate the
Microcrystalline Cellulose, Bisquick, Cane Sugar 0.8229 inventive method as applied to the mixture of Example 2.
Microcrystalline Cellulose, Corn Starch, Carboxymethyl 0.8202 While this section will only describe the calculations for one
f/{?““lose’ Cﬁ‘“e Sél%ilrl Canc 07944 of the top three identified best matches of Microcrystalline
ierocrystalline Cellulose, Cane Sugar ) Cellulose, Corn Starch, and Cane Sugar it should be under-
35 stood that the same calculations will be performed for every
As can be seen from Table 5, the three-component solu- possible combination of the top 10 matches (y=10) identified
tion is predicted as the best solution, i.e., has the highest  in Table 4.
corrected correlation coefficient value CorrectCorrCoef. The Target factor testing yields the ranked matches provided
top three solutions are three-component solutions, namely, in Table 4. One of the 1023 potential candidate solutions
(Microcrystalline Cellulose, Flour, Cane Sugar; Microcrys- 4 (subsets resulting from all possible combinations of the top
talline Cellulose, Corn Starch, Cane Sugar; and Microcrys- 10 matches) is Microcrystalline Cellulose, Corn Starch, and
talline Cellulose, Bisquick, Cane Sugar). Given the fact that Cane Sugar. The projected library spectra are calculated as
the spectra of Flour, Corn Starch, and Bisquick are very described above using Eqs. 4-6. The correlation coefficient
similar, these solutions can be considered equivalent. CorrCoef is then calculated for each component in the
FIGS. 4a—e illustrate the mixture spectra of Example 2 45 candidate solution using the projected library spectra and the
(FIGS. 4a and 4b), and the pure component spectra for Cane actual library spectr.a, as described in Eq. 7. The resulting
Sugar (FIG. 4¢), Microcrystalline Cellulose (FIG. 4d), and values calculated using Eq. 7 are 0.9588, 0.9564, and 0.8669
Corn Starch (FIG. 4¢). One can see that the mixture spec- for Microcrystalline Cellulose, Corn Starch, and Cane
trum shown in FIG. 4a (the first mixture spectrum) is Sugar, respectively. Using Eq. 8, the square root of the sum
significantly different from each individual pure component so of the squares of these numbers, divided by 3.0, equals
library spectrum as shown in FIGS. 4c—e. Again, a com- 0.9284. The test for negative concentrations is false (Eq. 9),
parison of FIGS. 4a and 45 illustrates some variation in the so the Microcrystalline Cellulose, Corn Starch, and Cane
peak intensities of the mixture spectra, which will help to Sugar solution is not deleted. The last step o.f the inventive
obtain a proper PCA model of this data set. As noted earlier, method (Bq. 10) is to square the cumulative correlation
the inventive method with work with only a small amount of 55 value (0.9284) and multiply it by the cumulative eigenvalues
variation. (0.9551 for three factors)—obtaining a corrected correlation
If one does a simple Euclidean Distance library search (a coeflicient value CorrectCorrCoef result of 0.8232, which is
perfect match has a score of 100) for the Example 2 first one Of the.top three m?ltches given that Corn Starch, Flour,
mixture spectrum, the following matches are obtained. and Bisquick are considered equivalent.
60  The inventive method of spectral unmixing described
TABLE 6 herein is not only more accurate than conventional spectral
unmixing methods, but can also be rapidly applied in a
Match Score Substance variety of situations. The speed at which the inventive
1 .83 Com Starch method obtains the ranking criterion, i.e., the corrected
5 8125 Microcrystalline 65 correlation coefficient value CorrectCorrCoef, and thus
Cellulose identifies the components of the mixture, allows one to

capture and analyze data sequentially as time dependent
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changes occur in the sample. Such time dependent changes
may arise in situations where the sampling of a mixture or
object occurs in defined time intervals, such as, for example,
in an air sampling system.

In one type of air sampling system, air samples are
sprayed onto a small, moving belt, with different positions
on the belt corresponding to different time periods. For
example, air sprayed onto the moving belt at a first point in
time will be sprayed at a first position on the belt, while air
sprayed onto the moving belt at a later point in time will be
sprayed at a second position on the belt. Collecting sets of
spectral data at the first and second positions on the belt
allows an analyst to monitor trends in the composition of the
air, particulates or other chemicals in the air that are being
analyzed over the time interval defined by the first and
second positions on the moving belt. For example, obtaining
a set of spectral data from the first position on the belt allows
an analyst, via the inventive spectral unmixing method
described herein, to determine the composition of the air
sample at the first point in time. Then, obtaining a set of
spectral data from the second position on the belt allows the
analyst, via the inventive spectral unmixing method
described herein, to determine the composition of the air
sample at the second, later point in time. The speed of the
inventive spectral unmixing method is such that the analyst
is readily provided with the air sample compositions at the
first and second points in time, such that the analyst can
analyze the air, particulates or other chemical compounds in
the air and observe trends in the composition of these air
samples during the time interval between the first and
second points in time. In this manner, the inventive spectral
unmixing method described herein can be utilized in
dynamic spectral unmixing applications where changes in
composition over time are analyzed.

It should be understood that the air sampling system
described above is provided for exemplary purposes only.
The dynamic nature of the inventive spectral unmixing
method can be utilized in any application or situation where
the sampling of a mixture or object (gas, liquid, solid,
powder, etc.) occurs in defined timed intervals. Monitoring
the dynamic changes in the corrected correlation coefficient
value CorrectCorrCoef, and thus the changes in the compo-
sition of the mixture, provides an analyst with further
information to distinguish small random noise variations,
i.e., sampling variations, from the trends exhibited by the
mixture or object being analyzed. Different situations will
dictate what trends are reasonable and anticipated. Those
trends that are unexpected in a given situation can have
implications that are particularly significant and of value for
early warning and/or process control. Such situations where
the dynamic nature of the inventive spectral unmixing
method can be fully realized include, but are not limited to,
situations such as product or chemical manufacturing,
patient monitoring and clinical diagnostics, as well as bio-
threat or hazardous chemical monitoring.

Additionally, the set of spectral data obtained from the
mixture and utilized by the present invention to determine
the composition of the mixture can include combined spec-
tral data sets obtained from the mixture at different points in
time. For example, different sets of spectral data can be
obtained from the mixture at different points in time, with
the different sets of spectral data combined into a combined
spectral data set. The inventive spectral unmixing method
described herein is applied to the combined spectral data set
to determine the composition of the mixture. By combining
the spectral data sets obtained from the mixture at different

20

25

30

35

40

45

50

55

60

65

16

points in time, one can obtain more accurate results than if
each of the spectral data sets were analyzed individually.
Similarly, this method can be applied to a mixture which
may change over time such as, for example, a drug tablet
exposed to a solvent. In other cases, the time dependent
spectral changes may correspond to spatial variations as the
sample is moved and spectra are sequentially taken.
The method of the present invention provides an accurate
and rapid means of identifying the components of a mixture
(gas, liquid, solid, powder, etc.). The examples provided
above attest to its reliability. While the present invention has
been described with particular reference to the drawings, it
should be understood that various modifications could be
made without departing with the spirit and scope of the
present invention. For example, while target factor testing
has been described herein as a technique for ranking a
plurality of library spectra of known elements based on their
likelihood of being a component of the mixture, any tech-
nique which provides such a ranking of library spectra can
be utilized with departing from the spirit and scope of the
present invention. Additionally, while various steps and
equations have been described herein for determining the
correlation coefficient CorrCoef, the cumulative correlation
coeflicient CumCorrCoef, and the corrected correlation
coefficient CorrectCorrCoef values, any step(s) or
equation(s) that results in a similar ranking of the candidate
solutions may be utilized in accordance with the teachings of
the present invention without departing from the spirit and
scope of the present invention.
We claim:
1. A method of identifying components of a mixture, said
method comprising the steps of:
obtaining a set of spectral data for a mixture, the set of
spectral data defining a mixture data space and wherein
said spectral data are obtained at a spatial resolution
sufficient to resolve non-uniformities in said mixture;

ranking a plurality of library spectra of known elements
according to their angle of projection into the mixture
data space;
calculating a corrected correlation coefficient for each
combination of the top y ranked library spectra; and

selecting the combination having the highest corrected
correlation coefficient, wherein the known elements of
the selected combination are identified as the compo-
nents of the mixture.

2. The method of claim 1, wherein the plurality of library
spectra of known elements are ranked using target factor
testing techniques.

3. The method of claim 1, wherein the step of calculating
a corrected correlation coefficient for each combination of
the top y ranked library spectra comprises the steps of:

calculating a correlation coeflicient for each known ele-

ment included in a given combination;

combining the correlation coefficients for the known

elements included in the given combination to develop
a cumulative correlation coefficient value;

developing cumulative eigenvalues for the given combi-

nation; and

multiplying the cumulative correlation coefficient value

by the cumulative eigenvalues to develop the corrected
correlation coefficient for the given combination.

4. The method of claim 3, wherein the step of combining
the correlation coefficients comprises the step of calculating
the square root of the sum of the squares of the correlation
coeflicients for the known elements included in the given
combination to develop the cumulative correlation coeffi-
cient for the given combination.
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5. The method of claim 3, wherein the step of combining
the correlation coefficients comprises the step of calculating
the square root of the sum of the squares of the correlation
coeflicients for the known elements included in the given
combination divided by the number of known elements
included in the given combination to develop the cumulative
correlation coefficient for the given combination.
6. The method of claim 3, wherein the step of calculating
a correlation coeflicient comprises the steps of:
calculating a projected library spectrum for each known
element included in the given combination; and

measuring the similarity of the projected library spectrum
with its actual library spectrum to develop the corre-
lation coefficient for each known element in the given
combination.

7. The method of claim 6, wherein the step of measuring
the similarity of the projected library spectrum with its
actual library spectrum comprises the steps of:

calculating the dot product of the projected library spec-

trum with the actual library spectrum; and

dividing the calculated dot product by the multiplication

of the dot product of the projected library spectrum
with itself and the dot product of the actual library
spectrum with itself to develop the correlation coeffi-
cient for each known element in the given combination.
8. The method of claim 6, wherein the step of calculating
a projected library spectrum comprises the steps of:
using the obtained mixture spectra and the known library
spectra to calculate relative concentrations of each
known element included in the given combination; and

using the calculated relative concentrations and the
obtained mixture spectra to calculate the projected
library spectrum for each known element included in
the given combination.

9. The method of claim 8, wherein if any known element
in the given combination is calculated to have a negative
relative concentration, eliminating the given combination
from consideration.

10. The method of claim 8, wherein if any known element
in the given combination is calculated to have a negative
relative concentration:

calculating the ratio of a maximum positive calculated

relative concentration for the given combination to the
average of the sum of the absolute values of the
calculated negative relative concentrations for the
given combination; and

if the calculated ratio is less than a predetermined number,

eliminating the given combination from consideration.

11. The method of claim 8, wherein if any known element
in the given combination is calculated to have a negative
relative concentration:

calculating the ratio of a maximum positive calculated

relative concentration for the given combination to the
average of the sum of the absolute values of the
calculated negative relative concentrations divided by
the number of concentrations that are negative for the
given combination; and

if the calculated ratio is less than a predetermined number,

eliminating the given combination from consideration.

12. The method of claim 11, wherein the predetermined
number comprises 4.0.

13. The method of claim 1, wherein y is equal to 10.

14. The method of claim 1, where the plurality of library
spectra of known elements are ranked according to their
angle of projection into the mixture data space, from small-
est to largest.
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15. The method of claim 1, further comprising the step of
correcting the set of spectral data to remove signals and
information not due to the chemical composition of the
mixture.

16. The method of claim 1, further comprising the steps
of:

obtaining, at a later point in time, another set of spectral

data for the mixture, such that the another set of
spectral data is separated from the set of spectral data
by a time interval, the another set of spectral data
defining another mixture data space and wherein said
another set of spectral data are obtained at a spatial
resolution sufficient to resolve non-uniformities in said
mixture;

ranking a plurality of library spectra of known elements

according to their angle of projection into the another
mixture data space;
calculating a corrected correlation coefficient for each
combination of the top y ranked library spectra; and

selecting the combination having the highest corrected
correlation coefficient, wherein the known elements of
the selected combination are identified as the compo-
nents of the mixture at the later point in time.

17. The method of claim 16, further comprising the step
of using the identified components of the mixture from both
the set of spectral data and the another set of spectral data to
analyze trends in the composition of the mixture over the
time interval.

18. The method of claim 1, wherein the set of spectral data
comprises a plurality of spectral data sets obtained from the
mixture at different points in time.

19. The method of claim 1, wherein the set of spectral data
comprises a plurality of spectral data sets obtained from the
mixture at different locations in the mixture.

20. A method of identifying components of a mixture
from a set of spectral data obtained from the mixture, said
spectral data being obtained at a spatial resolution sufficient
to resolve non-uniformities in said mixture, and defining a
mixture data space, said method comprising the steps of:

ranking, based on the set of spectral data, a plurality of

library spectra of known elements according to their
likelihood of being a component of the mixture, from
most likely to least likely;

calculating a ranking criterion for each combination of the

top y ranked library spectra; and

selecting a combination based on the ranking criterion,

wherein the known elements of the selected combina-
tion are identified as the components of the mixture.

21. The method of claim 20, where the plurality of library
spectra are ranked according to their angle of projection into
the mixture data space.

22. The method of claim 20, wherein the ranking criterion
comprises a corrected correlation coefficient, and wherein
the step of selecting a combination based on the ranking
criterion comprises the step of selecting the combination
having the highest corrected correlation coefficient, wherein
the known elements of the selected combination are identi-
fied as the components of the mixture.

23. The method of claim 22, wherein the step of calcu-
lating a corrected correlation coefficient for each combina-
tion of the top y ranked library spectra comprises the steps
of:

calculating a correlation coeflicient for each known ele-

ment included in a given combination;

combining the correlation coefficients for the known

elements included in the given combination to develop
a cumulative correlation coefficient value;
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squaring the cumulative correlation coefficient value;
developing cumulative eigenvalues for the given combi-
nation; and
multiplying the squared cumulative correlation coefficient
value by the cumulative eigenvalues to develop the
corrected correlation coefficient for the given combi-
nation.
24. The method of claim 23, wherein the step of calcu-
lating a correlation coefficient comprises the steps of:
calculating a projected library spectrum for each known
element included in the given combination; and
measuring the similarity of the projected library spectrum
with its actual library spectrum to develop the corre-
lation coefficient for each known element in the given
combination.
25. The method of claim 24, wherein the step of calcu-
lating a projected library spectrum comprises the steps of:
using the obtained mixture spectra and the known library
spectra to calculate relative concentrations of each
known element included in the given combination; and
using the calculated relative concentrations and the
obtained mixture spectra to calculate the projected
library spectrum for each known element included in
the given combination,
wherein if any known element in the given combination
is calculated to have a negative relative concentration:
calculating the ratio of a maximum positive calculated
relative concentration for the given combination to
the average of the sum of the absolute values of the
calculated negative relative concentrations divided
by the number of concentrations that are negative for
the given combination; and
if the calculated ratio is less than a predetermined
number, eliminating the given combination from
consideration.
26. The method of claim 20, further comprising the steps
of:
obtaining, at a later point in time, another set of spectral
data from the mixture, such that the another set of
spectral data is separated from the set of spectral data
by a time interval, the another set of spectral data
defining another mixture data space and wherein said
another set of spectral data are obtained at a spatial
resolution sufficient to resolve non-uniformities in said
mixture;

w

20

25

30

35

40

20

ranking, based on the another set of spectral data, a
plurality of library spectral of known elements accord-
ing to their likelihood of being a component of the
mixture, from most likely to least likely;

calculating a ranking criterion for each combination of the
top y ranked library spectra; and

selecting a combination based on the ranking criterion,
wherein the known elements of the selected combina-
tion are identified as the components of the mixture at
the later point in time.

27. The method of claim 26, further comprising the step
of using the identified components of the mixture from both
the set of spectral data and the another set of spectral data to
analyze trends in the composition of the mixture over the
time interval.

28. The method of claim 26, wherein the ranking criterion
comprises a corrected correlation coefficient, and wherein
the step of selecting a combination based on the ranking
criterion comprises the step of selecting the combination
having the highest corrected correlation coefficient, wherein
the known elements of the selected combination are identi-
fied as the components of the mixture.

29. The method of claim 20, further comprising the steps
of:

obtaining another set of spectral data from the mixture at
a location different from a location of the set of spectral
data, the another set of spectral data defining another
mixture data space;

ranking, based on the another set of spectral data, a
plurality of library spectral of known elements accord-
ing to their likelihood of being a component of the
mixture, from most likely to least likely;

calculating a ranking criterion for each combination of the
top y ranked library spectra; and

selecting a combination based on the ranking criterion,
wherein the known elements of the selected combina-
tion are identified as the components of the mixture at
the different location.

30. The method of claim 29, further comprising the step
of using the identified components of the mixture from both
the set of spectral data and the another set of spectral data to
analyze trends in the composition of the mixture over its
spatial area.



